BUILDING REHABILITATION 3. WATERPROOFINGS, FLAT ROOFS, DOORS AND WINDOWS

Lajos Gábor, Takács PhD associate professor BME Department of Building Constructions email: ltakacs@epsz.bme.hu

WATERPROOFING FAILURES OF SUBSTRUCTURES

MOISTURE EXPOSURES IN SOIL – SOIL VAPOUR

- Vapour between the soil particles
- Comes from the evaporation of the subsoil water
- Condensates of the surface of the subconstructions: subsoil moisture

MOISTURE EXPOSURES IN SOIL – SOIL VAPOUR

- Water on the surface of the particles
- No hydrostatic pressure
- Capillarity
 - Abrasive particle subsoil 2-3 cm
 - in adherent subsoil clay even 300 m!

MOISTURE EXPOSURES IN SOIL – SOIL VAPOUR

- Gaps between the soil particles filled completely with subsoil water
- Hydraulic pressure (depends on the level difference between the floor and the water table)
- Uplift hazard

WATERPROOFINGS – TYPICAL MISTAKES

- Design and construction failures
- Mechanical damage
- Lack of performance based design –
 inadequate waterproofing for the given
 exposure (f.i. 1 layer of bituminous sheet
 against subsoil water)
- Discontinous waterproofing missing parts or inadequate joints

PIPE PENETRATIONS OF WATERPROOFINGS - SLEEVE + LINK-SEAL

M Ŭ E G Y E T E M 1 7 8 2

PIPE PENETRATIONS OF WATERPROOFINGS - SLEEVE + LINK-SEAL

BME Faculty Of Architecture
Department Of Building Constructions

FAILURE: MISSING SLEEVE + LINK-SEAL

FAILURE: MISSING SLEEVE + LINK-SEAL

INADEQUATE SOIL BACKFILL POOR COMPRESSING

FLAT ROOF FAILURES

FLAT ROOF ALTERNATIVES

$$t_i \ge 24$$
°C $j_i \ge 75\%$

FLAT ROOFS - INCLINATION

How to provide inclination:

- with the loadbearing structure
- screed, lightweight screed
- special thermal insulation

Minimum 2 % (over lightweight structures,

minimum 3 %)

Pointwise drainage – linear drainage is not allowed in Hungary!

FLAT ROOFS - INCLINATION

How to provide inclination:

- with the loadbearing structure
- screed, lightweight screed
- special thermal insulation

Minimum 2 % (over lightweight structures,

minimum 3 %)

Pointwise drainage – linear drainage is not

allowed in Hungary!

FLAT ROOFS - INCLINATION

FLAT ROOFS - TYPICAL MISTAKES

- Ageing especially at bituminous waterproofings (UV protection)
- Inadequate vapour barrier condensation under the bottom level of the waterproofing
- Inadequate thermal insulation
- Inadequate inclination water accumulation – ageing, plants
- Blocked rainwater outlets (gullies)
- Inadequate protection against root acid

FLAT ROOFS - INADEQUATE INCLINATION

GULLY ALTERNATIVES

GULLY ALTERNATIVES – SYPHONIC ROOF DRAINAGE

FLAT ROOFS – LACK OF VAPOUR BARRIER CANNOT BE REPLACED WITH TECHNOLOGYCAL FOIL!

FLAT ROOFS - THERMAL INSULATION BOARD SHRINKING

FLAT ROOFS - IMPROPER CRAFTMANSHIP

FLAT ROOF FAILURES

EXTERNAL DOORS, WINDOWS AND THEIR TYPICAL FAILURES

EXTERNAL DOORS AND WINDOWS - EXPOSURES

- 1. temperature difference/swing
- 2. vapour pressure difference
- 3. wind
- 4. solar radiation
- 5. rain
- 6. noise
- 7. dust, pollution

EXTERNAL DOORS AND WINDOWS – PERFORMANCE CRITERIAS

resistance to wind load

resistant to snow load

reaction-to-fire classification

weatherproofness

hygieny, health and safety

mechanical durability

loadbearing capacity and security

width and height

acoustics (sound insulation)

• thermal insulation criteria

radiation (daylight factor— g)

air permeability

durability (general and determined)

operating force

mechanical durability (strenght)

ventilation (open ratio)

• (bullet- and explosion proofness)

resistace to repeated opening and closing

frame A,B,C, surface pressure: 1,2,3,4,5,E

A.B.C

A1, A2, B, C, D, E, F

1A, 2A... ...9A, E

related standard

ball 200, 300, 450, 700, 950 mm

declared value

declared value

declared value (1,6-2,0 W/m2K)

declared value

class 1, 2, 3, 4

class 1, 2

1, 2, 3, 4

declared value (cv factor, characteristics, etc.)

FB1- FB7, FSG; EPR1-4, EXR1-5

5000, 10 000, 20 000 times

• behaviour between different climates

burglary resistance

in preparation...

class 1, 2, 3, 4, 5, 6

ENERGY BALANCE OF DOUBLE GLASING

edge of the double glass

energy balance of the glass

Glass	U_g	
single layer	5,8	W/m²K
double (4-12-4)	2,8	W/m²K
triple (4-12-4-12)	2,1	W/m ² K

ENERGY BALANCE OF DOUBLE GLASING

energy balance of the glass

 $T_{\text{short wave}} > T_{\text{long wave}} \rightarrow$

→ glass house effect (overheating)

rolled glass – (was) cheap float glas – high quality

edge of the double glass

Glass	U_g	
single layer	5,8	W/m^2K
double (4-12-4)	2,8	W/m^2K
triple (4-12-4-12)	2,1	W/m^2K

COATED GLASSES, TRIPLE GLASSES, MULTIFUNCTIONAL GLASS

double 4 - 16 - 4

low-emission coating

Solar coating

multifunctional coating

triple glass pane with argon

4 - 10 - 4 - 10 - 4

0,8 W/m²K

4 - 12 - 4 - 12 - 4

0,7 W/m²K

4 - 14 - 4 - 14 - 4

0,6 W/m²K

4 - 16 - 4 - 16 - 4

0,6 W/m²K *

LOW EMISSION (LOW-E) GLASS

construction of single layer low-e coating

thickness: 0,2 µ

ALUMINIUM VS. PLASTIC SPACERS OF TRIPLE GLASING

M Ú E G V E T E M 1 7 8 2

ALUMINIUM VS. PLASTIC SPACERS OF TRIPLE GLASING

DOORS, WINDOWS - INSTALLATION

DOORS, WINDOWS - INSTALLATION

precipitation pushed up by wind

window flashing

waterproofing

artificial stone

DOOR, WINDOWS - INSTALLATION

DOOR, WINDOWS – INSTALLATION

DOOR, WINDOWS - INSTALLATION

EXTERNAL DOORS AND WINDOWS

Important features:

- Moving parts sash
- Joints

Typical problems:

- Missing lintel deformation
- Improper installation missing external wind-and raintight foil, missing vapour barrier
- Thermal bridge poor thermal insulation around the door or window
- Mechanical failure lack of maintenance
- Failure of finishing (especially at timber windows)
- Missing connection to the waterproofing water penetration

EXTERNAL DOORS AND WINDOWS

Important features:

- Moving parts sash
- Joints

Typical problems:

- Missing lintel deformation
- Improper installation missing external wind-and raintight foil, missing vapour barrier
- Thermal bridge poor thermal insulation around the door or window
- Mechanical failure lack of maintenance
- Failure of finishing (especially at timber windows)
- Missing connection to the waterproofing water penetration

EXTERNAL DOOR CONNECTION TO THE WATERPROOFING

EXTERNAL DOOR CONNECTION TO THE WATERPROOFING

EXTERNAL DOOR CONNECTION TO THE WATERPROOFING

SKYLIGHT WINDOWS - CONNECTION OF THE UNDERLAYER FOIL

M Ü E G V E T E M 1 7 8 2

SKYLIGHT WINDOWS - CONNECTION OF THE UNDERLAYER FOIL

SKYLIGHT WINDOWS - INSTALLATION

†protection of bottom edge with ribbed lead sheet

gutter strips around the window frame \rightarrow

SKYLIGHT WINDOWS - VAPOUR BARRIER - CONTINUITY

SKYLIGHT WINDOWS – THERMAL INSULATION - CONTINUITY

SKYLIGHT WINDOWS - IMPROPER INSTALLATION

SKYLIGHT WINDOWS - IMPROPER INSTALLATION

Vapour condensation "open sky" problem (overcooling problem) – must be compensated with local heating unit!

TRADITIONAL DOUBLE SASH WINDOW AND ITS RECONSTRUCTION

TRADITIONAL DOUBLE SASH WINDOW - FAILURES

TRADITIONAL DOUBLE SASH WINDOW - FAILURES

TRADITIONAL DOUBLE SASH WINDOW - FAILURES

REPLACEMENT OF TRADITIONAL DOUBLE SASH WINDOW TO SINGLE SASH UP-TO-DATE CONSTRUCTION INCREASING THERMAL BRIDGE EFFECT

REPLACEMENT OF TRADITIONAL DOUBLE SASH WINDOW TO SINGLE SASH UP-TO-DATE CONSTRUCTION INCREASING THERMAL BRIDGE EFFECT

INTERNAL DOORS

FAILURES OF INTERNAL DOORS

No external exposures (wind, rain) Mechanical exposures – especially in public buildings

Performance criterias:

- Operating forces (accessibility)
- Repeated opening and closing cycles
- Behavior between different climatic conditions
- Airborne sound insulation performance
- Durability (mechanical resistance)

Typical problems

- Missing lintel deformation
- Improper installation

IMPROPER INSTALLATION

Performance criterias:

- Operating forces (accessibility)
- Repeated opening and closing cycles
- Behavior between different climatic conditions
- Airborne sound insulation performance
- Durability (mechanical resistance)

Typical problems

- Missing lintel deformation
- Improper installation

FAILURES OF INTERNAL DOORS

FLOOR STRUCTURES, FLOOR COVERINGS

FLOOR STRUCTURE ALTERNATIVES

Contact floor (hard, soft)

elastic

Floating floor

FLOATING FLOOR STRUCTURE

Layers are:

- Floor covering
- Adhesive
- Self-levelling layer
- Screed
- Technological layer
- Acoustic insulation
- Installation layer (electricity, HVAC)
- Floor slab

HVAC AND ELECTRIC INSTALLATIONS IN THE FLOOR LAYERS

HVAC AND ELECTRIC INSTALLATIONS IN THE FLOOR LAYERS ...

HVAC AND ELECTRIC INSTALLATIONS IN THE FLOOR LAYERS ...

Typical failures are:

- Frost damage
- Mechanical damage
- Improper anti-slippery performance

FLOOR COVERING FAILURES

