

© Becker Gábor 2018 BME Ép.szerk.Tanszék

16.5 29

masonry structures, historical overview

- at the beginning thick, solid stone-mixed walls strength is the primary consideration
 stone is expensive and cannot be found everywhere: rammed earth-drie

- storie is expensive and carifio be found then fired brick see in the Bible
 molded, fired: Mesopotamia, later Egypt
 fired bricks of various sizes: Rome →
 brick, masonry blocks
- fired clay elements: bricks, masonry blocks
- echemically produced elements: limestone, concrete, PS foam
 elements of natural materials: adobe bricks, wood chips
- starting point is the old, large-size brick its size is coordinated in three directions
- masonry: structure made from bricks laid according
- to the walling rules and mortar
- 6.5 (wall - masonry: all masonry structures are walls but not all walls are masonry)

history, the brick walls - wall design, masonry structures - overview

20

14 14 1

© Becker Gábor 2018 BME Ép.szerk.Tanszék manufacture of bricks, clay building blocks raw material: clay - group of sedimentary-eruptive rock process e clay extraction, preparation (crushing + water), shaping - the purity of the clay is important: lime stains, efflorescence... adding additives for some walling blocks (increasing porosity and thermal insulation capacity, polystyrene beads, wood chips) sending through a press machine then a cutting machine drying and tirring (950-1000°C)

- build up of bricks, the mortar
- functions of mortar: connects construction elements

- levels the supporting planes
 fills the gaps (heat storage)
 even load transfer (horizontal or vertical
- joint) fixes, seals and bonds
- allows for dimension compensation

H ALLÓ R

FEKIÓH.

brick production and mortar wall design, masonry structures – wall components

speed up of masonry works (change of shape, elimination of filling the vertical joints)

building blocks wall design, masonry structures - walls from building blocks

formwork element building blocks

Durisol formwork element system (Hungarian innovation) construction system with formwork element, sandwich structure

 building as from walling block – 2 layers
 putting in reinforcement - pouring concrete - vibrate (driving out bubbles compaction)

(wall, ring beam, lintel, slab) block dimensions 25-40/25/100 cm

Build-up:

assachive) assembly: Building toy system (click-fittir advantages: fast construction, thermal-b diffusion? cm interior leaf + 15cm concrete + 10-25cr exterior PS leaf. . formwork element building blocks wall design, masonry structures - building blocks 3

wall design, masonry structures - building blocks 2

• easy to work with, can be cut with handsaw

- wall thickness: 30, 37,5 50 cm U-value: 0.27-0.45 0.22-37 0.17 W/mK°

- aggregate manufacturing: grinding, mixing, maturation in forms, cutting, autoclaving lightweight, good thermal insulation, several strength (density) classes exact geometry 0.25-0.5 cm with (adhesive) mortar thin joints block height: 20 cm, length: 50 and 60 cm
- (AAC) blocks raw materials: quartz sand, lime, cement and water + pore forming aggregate
- autoclaved aerated concrete

desig dimens building	n of walls sions: to be designed preferably with the integer multip g block size (width, height) + joint	© Becker Gábor 2018 BME Ép.szerk.Tanszék Die of the
1. hori small-s no carv cla building and wa	zontal (floor plan) size coordination size brick: overlap 1/4 B, width unit is 1/2 B = sz H (Length) = n x (sz+1) -1 ved brick is allowed for load-bearing wall pillars and for adding. g blocks: the unit is the width size of one block (sz=20 to be designed on basis of the minimum overlap (us all end elements zo of wallon dillors is 2.5 yesz. (to be checked!) $\frac{1}{1+22}$	r exposed brick ŀ-25 cm) sually sz/2) - half block
	floor pl walls – design of walls, masonry structures – design	an size coordination of masonry structures

	© Becker Gábor 2018 BME Ép.szerk.Tanszék	
2. height (vertical) size coordination	KOSZORU HÓSZIGETELES VB.KOSZORU FALEGYEN	
unit: height of a block (m) + horizontal joint (h) good, if: - the parapet (PM) - opening's size (NM) - lintel (SZ) can be divided by the height of a block (m) M = n x (m+h) = PM + NM + SZ no cut block is allowed under the prefabricated lintel!		
vertical size coordination walls – design of walls, masonry structures – design of masonry structures		

masonry structures, historical overview

brick, masonry blocks

- build up of bricks, the mortar
 build up of building blocks the rules of walling (brick bonds)
 bonding of typical geometries with brick

masonry blocks

- options for horizontal and vertical joints
 one(two)-handed clay building blocks
 autoclaved aerated concrete (AAC) blocks
 PS foam formwork element system
 building blockbonds

role and function of ring beam

design of walls: horizontal (floor plan) and vertical size coordination

summary

walls - requirements for walls - airtightness