RAMPS, STAIRS, LADDERS

Level differences $==>$ connection need

1. GEOMETRY

- Ramp - 0-15 ${ }^{\circ}$ (27\%)
- Wheel chair, handicapped access (!!!)

5-8 \% depending on - the level difference of the ramp - the length of the ramp

- Physical work (trolley), baby car 10-15\%
- Car $\leq 15 \%$ (20 just personal car - !!! to round off the ends)
- Pedestrian:
8%
- Width - depending on the function $\quad \geq 1,20-1,50 \mathrm{~m}$
- Hand rail (Wheel chair, handicapped access): double hand rail 70 and 95 cm height, $\varnothing 5 \mathrm{~cm}$ - sliding / skidding risk (open air, snow, ice, sliding free finishing, and/or heating)!!!!
- Stair 15-45/60 ${ }^{\circ}$

Practically: \quad R(ise) [cm]

- STEP \rightarrow OTÉK 65.§
- Rule: $\mathbf{2 \times R}+\mathbf{G}=\mathbf{6 0 - 6 5} \mathbf{~ c m}$ (ergonomics - average step legth)
- The more people use it, the more comfortable the stair must be.
- Inside a flat: $\quad \max 45^{\circ}(100 \%) \leq 20$
- Residential housing, Housing estate staircase ≤ 17
- Public buildings ≤ 15
- Gala $=13$
- Garden ≤ 13
- Ladder
$60-90^{\circ}$
- Vertical ladder - fall protection \rightarrow grating
- Just for only maintenance reason: above 45°

2. SPECIAL REQUIREMENTS ABOUT STAIRCASE:

- Flight width (free - nothing in it)
$\geq 1,10 \mathrm{~m}$
$\geq 0,6 \mathrm{~m}$ maintenance,
$\geq 0,8 \mathrm{~m}$ inside a flat,
$\geq 1,65 \mathrm{~m}$ public
- LANDING \rightarrow OTÉK 67.§
- Landing width:
- Handrail:
- Earlier
$\geq 1,20 \mathrm{~m}$ (flight +10 cm , flight +20 cm , if door, other \ldots)
Not to be climbed!
Not to stuck in! (children's head -12 cm) $1,0 \mathrm{~m}$ height (if the top cover width ...) not to be sliding on it.

3. FIRE PROTECTION:

- Escape routes --> not spiral (or helical) stair
--> not combustible materials
- Smoke-free staircase (anteroom as a smoke-gap, ventilation)
- Escape time calculation (depending on No of people, height, No of floors, width of flight, ...)

4. STAIR CLASSIFICATION, GROUPING

- ACCORDING TO LOCATION - stairs independent of the building
- stairs connected to the building
- internal stairs
- ACCORDING TO NUMBER FLIGHTS - $(1,2,3, \ldots)$
- RULE \rightarrow OTÉK 64.§
- In one flight max. 20 rises
- maximum vertical span of flight 180 cm in public building
- \quad Straight flight (with landing) - a lot of walking (slow)
- Half turn stair with open well (or without - doglegged)
- Quarter turn stair
- \quad Three flights with well (double quarter turn)
- *asymmetrical steps (split, Vienna, Leipzig...)
- ACCORDING TO FLIGHT SHAPES - (straight, curved, special)
- \quad *Curved single flight stair - position of the walking line (step dimension)
- \quad *spiral stair - position of the walking line (step dimension)
- \quad *Helical stair - position of the walking line (step dimension)
* Never forget to check the headroom above the flight!!! (Min. 2,20 m)
- ACCORDING TO MATERIALS - rc., stone, artificial stone, timber, steel, mixed
- ACCORDING TO STATICS SYSTEM - hanging
- supported

5. REQUIREMENTS FOR STAIRS

1.1 ARCHITECTURAL \rightarrow detail definition, materials selection, ...etc. - AESTHETIC
1.2 TRAFFIC \rightarrow geometry (escape time calculation), abrasion resistance, non skidding, noise insulation, ...
1.3 LOAD BEARING STRUCTURE
1.4 BUILDING CONSTRUCTION ASPECT \rightarrow harmony of selected materials
1.5 \quad FABRICATION \rightarrow cost effective construction

6. STAIR CONSTRUCTION TERMINOLOGY

Terminology:

- step
- flight
- landing
- well (flight gap)

7. SUPPORT AND LOAD BEARING SCHEME of steps

- HANGING STAIRS \rightarrow steps weighing onto each other and otherwise on one end rigidly affixed into the wall, the other end is free hanging
- SUPPORTED STAIRS \rightarrow steps weighing onto each other and otherwise directly on the ground or onto beams, arches etc.

RC STAIRS

1. DETAILS, TURNING POINT

MARGINAL ISSUES:

RELATIONSHIPS:
$\operatorname{tg} \alpha=\frac{h}{e} \quad, \quad \operatorname{tg} \alpha=\frac{m}{s z}, \quad \cos \alpha=\frac{v}{l}$
$\mathrm{Pv}=\mathrm{t}-\mathrm{h}=\mathrm{t}-\mathrm{e} * \mathrm{tg} \alpha$
$\mathrm{t}=\mathrm{m}+\mathrm{l}=\mathrm{m}+(\mathrm{v} / \cos \alpha)$

2. CALCULATION AND DECISIONS (SAMPLE)

- (Arrangement - where to situate the room for the stair within the building?)
- \quad Floor height? ($3,05 \mathrm{~m}$)
- \quad Function of the building? \rightarrow Rise \rightarrow Go (Residential, $17 \mathrm{~cm}, 30 \mathrm{~cm}$)
- \quad Step dimensions \rightarrow No. of steps ($18 \times 17=306 \mathrm{~cm}$, to modify floor height)
- Function \rightarrow Length / height of one flight (as you wish - architectural tool)
- No. of flights (as you wish - architectural tool)
- \quad Landing dimensions ($+10,+20,+40 \mathrm{~cm}$: doors, measures)
- Material of the stair? (Monolithic RC)
- Method of load-bearing? (Between landings)
- \quad Finishing? Thickness of the finishing? (Stone)
(linoleum, PVC, rubber, cork, carpet, tile, steel artificial stone)
- Load-bearing cross-section (span /20, but minimum 12 cm)
- \quad Special requirements? (Thermal ins., airtight, ...)

3. CONSTRUCTION AT THE TURNING POINT:

- Pitch / soffit lines of the ranking / sinking flight,
- turning edge line
- \quad Go=s+r
- The turning edge line can move, and at the same time the landing thickness is changing.
- Final solution by attempting repeatedly

4. THE MATERIAL (today RC.) CONSTRUCTION

From prefabricated elements

- \quad step
- \quad part of the flight $(1 / 4,1 / 3,1 / 2)$
- one flight
in-situ-made construction (monolithic)

5. FIXING OF BALUSTRADE

- on the side
- on the top (free room!!!)
- Position of balustrade vs. turning edge line!!

