□ RAMPS, STAIRS, LADDERS

Level differences ==> connection need

1. GEOMETRY

- Ramp $-0.15^{\circ}(27\%)$ •
 - Wheel chair, handicapped access (!!!) 5-8 % depending on - the level difference of the ramp - the length of the ramp
 - Physical work (trolley), baby car 10-15%
 - Car $\leq 15\%$ (20 just personal car – !!! to round off the ends)
 - Pedestrian:
 - Width depending on the function ≥1,20-1,50 m
 - Hand rail (Wheel chair, handicapped access): double hand rail 70 and 95 cm height, Ø5 cm
 - sliding / skidding risk (open air, snow, ice, sliding free finishing, and/or heating)!!!!

8 %

15 - 45/60° Stair

Practically:

- STEP → OTÉK 65.§

- **Rule:** 2×**R** + **G** = 60-65 cm (ergonomics – average step legth)

- The more people use it, the more comfortable the stair must be.
- Inside a flat: max 45° (100%) ≤ 20 - Residential housing, Housing estate staircase ≤ 17 - Public buildings ≤ 15 - Gala = 13≤ 13
- Garden

Ladder

60-90°

- Vertical ladder – fall protection \rightarrow grating

- Just for only maintenance reason: above 45°

2. SPECIAL REQUIREMENTS ABOUT STAIRCASE:

- Flight width (free – nothing in it)	≥ 1,10 m
-	\geq 0,6 m maintenance,
-	\geq 0,8 m inside a flat,
-	\geq 1,65 m public
- LANDING → OTÉK 67.§	
- Landing width:	\geq 1,20 m (flight + 10 cm, flight + 20 cm, if door, other)
- Handrail:	Not to be climbed!
	Not to stuck in! (children's head – 12 cm)
	1,0 m height (if the top cover width)
- Earlier	not to be sliding on it.

3. FIRE PROTECTION:

•

- Escape routes

--> not spiral (or helical) stair --> not combustible materials

- Smoke-free staircase (anteroom as a smoke-gap, ventilation)
- Escape time calculation (depending on No of people, height, No of floors, width of flight, ...)

4. STAIR CLASSIFICATION, GROUPING

- ACCORDING TO LOCATION
 - stairs independent of the building
 - stairs connected to the building
 - internal stairs

R(ise) [cm]

- ACCORDING TO NUMBER FLIGHTS (1, 2, 3, ...)
 - RULE \rightarrow OTÉK 64.§
 - In one flight max. 20 rises
 - maximum vertical span of flight 180cm in public building
 - Straight flight (with landing) a lot of walking (slow)
 - Half turn stair with open well (or without doglegged)
 - Quarter turn stair
 - Three flights with well (double quarter turn)
 - *asymmetrical steps (split, Vienna, Leipzig...)
- ACCORDING TO FLIGHT SHAPES (straight, curved, special)
 - *Curved single flight stair position of the walking line (step dimension)
 - *spiral stair position of the walking line (step dimension)
 - *Helical stair position of the walking line (step dimension)

* Never forget to check the headroom above the flight!!! (Min. 2,20 m)

- ACCORDING TO MATERIALS rc., stone, artificial stone, timber, steel, mixed
- ACCORDING TO STATICS SYSTEM hanging
 - supported

5. REQUIREMENTS FOR STAIRS

- 1.1 ARCHITECTURAL \rightarrow detail definition, materials selection, ... etc. **AESTHETIC**
- 1.2 TRAFFIC→ geometry (escape time calculation), abrasion resistance, non skidding, noise insulation, ...
- 1.3 LOAD BEARING STRUCTURE
- 1.4 BUILDING CONSTRUCTION ASPECT → harmony of selected materials
- 1.5 FABRICATION \rightarrow cost effective construction

6. STAIR CONSTRUCTION TERMINOLOGY

7. SUPPORT AND LOAD BEARING SCHEME of steps

- HANGING STAIRS→ steps weighing onto each other and otherwise on one end rigidly affixed into the wall, the other end is free hanging
- SUPPORTED STAIRS \rightarrow steps weighing onto each other and otherwise directly on the ground or onto beams, arches etc.

□ RC STAIRS 1. DETAILS, TURNING POINT

MARGINAL ISSUES:

e=i

RELATIONSHIPS:

$$tg\alpha = \frac{h}{e}$$
, $tg\alpha = \frac{m}{sz}$, $\cos\alpha = \frac{v}{l}$

 $Pv = t - h = t - e * tg\alpha$

 $t = m + l = m + (v/\cos\alpha)$

2. CALCULATION AND DECISIONS (SAMPLE)

- (Arrangement where to situate the room for the stair within the building?)
- Floor height? (3,05 m)
- Function of the building? \rightarrow Rise \rightarrow Go (Residential, 17 cm, 30 cm)
- Step dimensions \rightarrow No. of steps (18×17= 306 cm, to modify floor height)
- Function \rightarrow Length / height of one flight (as you wish architectural tool)
- No. of flights (as you wish architectural tool)
- Landing dimensions (+10, +20, +40 cm: doors, measures)
- Material of the stair? (Monolithic RC)
- Method of load-bearing? (Between landings)
- Finishing? Thickness of the finishing? (Stone)
 - (linoleum, PVC, rubber, cork, carpet, tile, steel artificial stone)
- Load-bearing cross-section (span /20, but minimum 12 cm)
- Special requirements? (Thermal ins., airtight, ...)

- **3. CONSTRUCTION AT THE TURNING POINT:**Pitch / soffit lines of the ranking / sinking flight,
- turning edge line
- Go=s+r
- The turning edge line can move, and at the same time the landing thickness is changing.
- Final solution by attempting repeatedly

4. THE MATERIAL (today RC.) CONSTRUCTION

From prefabricated elements

- step
- part of the flight (1/4, 1/3, 1/2)
- one flight

in-situ-made construction (monolithic)

5. FIXING OF BALUSTRADE

- on the side
- on the top (free room!!!)
- Position of balustrade vs. turning edge line!!