□ FLOOR Constructions

- <u>Materials</u> Takes stretching forces? <u>YES</u>
 - Monolithic areas
 the possib
 - the possible solutions (trough, lighting)
 - thickness vs. span (minimal th.)
 - Support of the construction
 - "sitting on" vs. encastr beam end
 - support reinforcement
 - Subconcrete load vs. load bearing capacity / noise insulation
- – <u>Historical constructions</u>
 - Steel (Hot rolled HR)
 - Cambered arch
 - \diamond simple vs. skewback / abutment brick
 - Standard small brick / panel / filler block
 - Combined with monolithic
 - <u>Monolithic</u>
 - Beam row type monolithic
 - (Full) monolithic
 - Prefabricated
 - [Beam + filler blocks (discussed)]
 - Panel floor
- - Other building methods
 - Monolithic
 - (tipical)
 - LIFT-SLAB floor elevation technology (for each level) <u>attributes</u>: - basic concept:
 - a hungarian invention (1930's SAMSONDI KIS BÉLA)
 - example BME MENZA cafeteria building
 - well used for closed-in locations where organization is otherwise a problem
 - quick, on-site fabrication
 - free floorplan designation
 - construction stages:
 - 1. after preparation of a proper foundation, the pouring of slab elements on the ground level

bottom slab

- 2. common lifting of all slab elements (synchronized hydraulic elevators), placement of ground floor pillars and fixation of the first floor slab, relocation of the hydraulic system
- 3. elevation of additional levels, insertion of pillars, fixation of remaining slab units
- LIFT-FORM (with multi-level pillars) <u>attributes:</u>
 - the process involves the lifting of the complete floor form unit onto the top of high, multi-level pillars (typically steel)
 - the pouring of internal stabilizing core constructions
 - pouring of floors from the top on down
- Lift-construction
- "Tunnel formwork"
- <u>Panel</u>
- Steel frame

- continue

- tensioned steel reinforcement
 - advantages of modern reinforcement technology =
 - smaller, advantageous cross sections
 - higher stability
 - originally bent cross-section becomes excentrically pressured crosssection
 - prestressing of the steel reduces actual tension in the concrete, cracs are reduced
 - stages of the tensioning process, stress curves
 - disadvantage:
 - o complex equipment and knowledge requirement
 - o man-hour requirements
 - \circ $\,$ concrete cover protection of the steel is less, increased fire hazard
 - LIGHT CONSTRUCTION
 - <u>Timber</u>
 - in-situ
 - prefabricated wall panel
 - <u>Steel</u>