□ FLOORS

- <u>function:</u>
- horizontal separation, covering spaces (above top floors)
 [the structure weighs / stands on walls and pillars (wall or frame type structural systems)]

[plane, curved, stepped-type, horizontal or tilted separation]

- classification :
 - plane floors, types:

beam row type
 beam type
 ribbed
 block insert
 (wood, steel, r.c.)
 (wood, steel, r.c.)
 (reinforced concrete)

o poured / monolithic solid slab (reinforced concrete)

panel type (reinforced concrete)

vaults (horizontal pressures!)

- primary requirements:
 - load bearing capacity, stability, rigidity, limited deformation
 - should fix walls in place, take and distribute horizontal forces
 - enduring (for the lifespan of the building)
 - fulfill heat, noise and water insulation requirements
 - fulfill fire resistance requirements
 - fulfill use related requirements
 - fulfill aesthetics requirements
 - fulfill construction and cost factor requirements
- components:
 - load bearing section (wood, steel, r.c. slab, glass, brick, stone etc.)
 - finishing layer (cold, warm, semi-cold, hard, elastic, soft, floating)
 - fill (in older floor construction)
 - heat or water insulation (as required)
 - bottom surface finishing (possibly)
 - suspended ceiling (possibly)
 - raised floor (possibly)
- the finishing layer from an acoustic standpoint may be:
 - hard
 - floating
 - elastic
 - soft
- specific requirements:
 - stability req.:
 - load bearing capacity must be calibrated!
 - pre fabricated floors

$$M_M < M_H$$

 $q_m < q_H$

- poured floors (slabs) → "rule of thumb" estimations during calibration

beams

$$h = \frac{l_0}{20} \text{ (dual support)} \qquad h = \frac{l_0}{25} \text{ (multiple support)}$$

slabs

$$v = \frac{l_0}{30}$$
 (dual support) $v = \frac{l_0}{40}$ (multiple support)

deformation specifications

maximum allowed deflection:

- high aesthetics $\frac{l}{200}$
- family houses $\frac{l}{150}$
- pre fabricated r.c. $\frac{l}{300}$

Loads

- Load bearing: useful load 150-1500 kg/m2 [flat, office, public, industrial, archives (paper store), data in BOOK]
- + building parts, elements partition wall, floor finishing,
- special local loads (safe, water tank),
- dynamic load, vibration (machinery room e.g. ventilator)

Load bearing during the construction

- self supporting
- not self supporting needs temporary support

<u>load distribution (cooperation of structural elements)</u>

- the goal is to distribute concentrated loads amongst load bearing elements
- to avoid cracks, economy issues
- load distribution reference value should be around 50%

endurance

- brick, concrete, reinforced concrete slabs \rightarrow when properly constructed, endurance is high
- steel floor → when proper anti-corrosion layer is applied, endurance is high
- wood floor → water must not reach it (rotting, fungi, mould)

fire resistance

- BM. 2002/2 (I.23) regulation specifies calibration rules
- medium buildings (above 13,65m) the rules become strict
- requirement is fire resistance in hours as defined by T_H category
- higher requirements to divide fire compartments
- r.c. beams
 - ullet increasing with and the concrete coating on steel under tension will increase in the T_H value
 - statically unstable solution will increase T_H value by 50%
 - pre-tensioning of beams reduces T_H by about 30%
 - fire resistance of the construction will be increased by plastering or applying fireproof coatings
- similar requirements for r.c. slabs
- the structure must not emit toxic fumes during burning
- **noncombustible** materials on **escape routes** (finishes)

HEAT INSULATION req.

- heat insulation between similar functional spaces is not required
- at top floors (roof slabs or slabs below roofs) the specified U values for heat transmission capacities muts be adhered to
- unwanted heat bridge effects (ring beams, beams, lintels) should be reduced with additional insulation
- balconies, overhanging roofs and other structures in direct contact with slabs should be separated with heat bridge gap solutions
- thermal capacity!!!

WATER INSULATION requirements

- DPC (mass shower room, kitchen for restaurant)

ACQOUSTIC INSULATION requirements

- air noise transmission (radiated) *resistance* value R'w (definition as for walls, rule of thumb: mass of floors should exceed 350 kg/m²)
- from an acqoustic point an even weight distribution is advantageous (solid r.c. slab is better than a hollow or ribbed solution)
- transmitted noise (stepping, knocking noises) transmission values: L_nw (weighed noise transmission level) in dB

noise reistance

increase in air reduction in knocking

noise transmission

$$\Delta L_{_{\!\mathit{DW}}} = L_{_{\!\mathit{NW},a}} - L_{_{\!\mathit{NW},b}} \qquad \text{reduction for finishing layers}$$

change

raw slab transmission level

- the less the L_{nW} value, the better the transmission resistance

Noise transfer reduction effect of various floor finishes:

		110100 1010101100	motor transmission
		$\Delta R' dB$	\DeltaLw'
hard finish		1	0
soft finish	PVC with foam	0	21
	carpeting	0	24
elastic finish	hardwood floor	0	16
floating	20/15 ISOLIT	3	30

- special situations: inside a flat, offices, between different functions, factory, movie rooms!!!
- MULTIPLE SUPPORT requirements (for beam type floors M distribution) advantage

• CONSTRUCTION requirements

- construction principles: over elevation support in relation to span
- pouring, reinforcement placement instructions, after treatment, centering removal

ESTHETICAL requirements (special shape)

- FINISHING requirements
 - Esthetical requirements
 - Abrasion resistance
 - Soft, warm, ...etc.
 - Antistatic
 - Spark free
 - Conductive
 - where to situate the HVAC engineering equipments, pipes
- BUILDING METHOD (supplier's, contructor's requirements)
- required TIME OF BUILDING PROCESS
- ECONOMY of the building during the whole lifecycle
 - investment (construction costs),
 - running cost,
 - maintenance costs,
 - cost of renewal,

- demolishing cost - environment protection!!

SPECIAL requirements

- transperency (translucency) (glass, glass insert floors)
- resistance against aggressive materials (acids, bases, fats etc.)
- dynamic load bearing (garage slabs, vibrations)
- removable floors or roofs (sport facilities)
- incorporate lighting units)
- protection from radioactive / magnetic radiation, or taking part in lightning protection, or earthquake, etc.

CLASSIFICATION OF FLOORS (CONT.)

- according to statics scheme (dual- or multiple-support)
- single- or or multi-directional load bearing (lateral, unilateral)
- according to location: top floor, bottom floor, intermediate floor
- according to material: wood, steel, r.c., brick, stone, glass, etc.
- according to reinforcement: soft steel, pre- or post-tension steel
- according to fabrication: pre-fabricated, in-situ-made, partial pre-fabrication